

The Case for Python in Web Security Testing

By:

Nathan Hamiel – FishNet Security
Marcin Wielgoszewski – Gotham Digital Science

Black Hat USA 2010

Abstract
It seems that everything is a web application nowadays. Whether the application
is cloud-based, mobile, or even fat client they all seem to be using web protocols
to communicate. Adding to the traditional landscape there is rise in the use of
application programming interfaces, integration hooks, and next generation web
technologies. What this means for someone testing web applications is that
flexibility is the key to success. The Python programming language is just as
flexible as today’s web application platforms. The language is appealing to
security professionals because it is easy to read and write, has a wide variety of
modules, and has plenty of resources for help. This additional flexibility affords
the tester greater depth than many of the canned tests that come with common
tools they use on a daily basis. Greater familiarity plus flexible language equals
tester win!

Write Your Own?
Someone tasked with testing modern web technologies needs to be flexible.
There will be times when the standard tool kits are not effective for a testing
situation. Testing tools are constantly lagging behind technology and their
capabilities can be limited. Rather than throwing up your hands and admitting
defeat there are steps you can take to ensure success in your testing activities.
This success often comes with writing your own clients and performing your own
tests.

With intimate knowledge of the applications that are being tested new doors
begin to open that were previously closed. Say for instance that we have a highly
dynamic site. Every time a page is laid out in the browser the links associated
with menu items have some randomized values associated with them and these
values are never the same twice. This can wreak havoc on standard testing tools
because tests cannot be replayed, which is how many web testing tools work.
Even though testing is difficult from a standard tool perspective, someone writing
a client merely needs to be able to read and parse the content.

Why Python
Python is a byte compiled, object-oriented programming language that is easy to
read and write. This makes Python a good fit for programs from just a few lines to
thousands of lines of code. The language is great for security professionals
because it allows for the rapid creation of tests as well as reusable items for
future use. Many tools are written in Python. This offers many opportunities for
extending and adding features to tools that are already written.

Being that there are many tools are writing in Python it also means that there are
plenty of code examples for you to take advantage of. There is a search engine

for Python source code called Nullege1. This search engine can be used to find
examples of how to use modules or other Python code features in real world
examples.

Building an HTTP Client
Building an HTTP client in Python couldn’t be easier. Built in to the Python
standard library are modules such as httplib, urllib, and urllib2. These modules
have difference capabilities between all of them, but are useful for a majority of
your web testing. There is also the 3rd party httplib22 module that provides some
enhanced capabilities over the standard httplib module.

Parsing Content
Python has the capability built in to the standard library read and parse various
data formats. The standard library has modules such as xml, json, and
HTMLParser. There is also a wide variety of 3rd party modules that allow for
parsing of data as well. For example the built in HTMLParser module does not
deal well with malformed HTML. This is why it’s necessary to rely on 3rd party
module such as lxml3 for parsing HTML. Not only is lxml a great parser for XML
and HTML it’s also highly efficient. The lxml module has performance
advantages over other parsers such as BeautifulSoup, html5lib, as well as the
built in HTMLParser. Ian Bicking did a comparison4 of Python parser
performance for his PyCon talk in 2008 which shows lxml coming out on top in
most tests.

Even though the built-in xml module is sufficient for parsing XML you might want
to consider using lxml to parse your XML data as well. It’s a good idea whenever
encountering HTML, XHTML, and XML to use lxml. Many people talk about
BeautifulSoup to parse HTML and XML. The maintainer of BeautifulSoup has
expressed interest in not continuing the project and recommends that people use
lxml instead. Recent changes to the Python language has made BeautifulSoup a
bit less tolerant than it was in the past.

Weaponize Your Tests
Python provides all of the modules necessary to communicate with modern web
technologies so what is left is weaponizing your test cases in order to create
accurate tests for vulnerabilities. Many tests for vulerabilities can be run by just
sending GETs and POSTs.

pywebfuzz
One of our goals is to make the testing of web applications easier from the
Python programming language. We want the logic to make different requests as

1 http://nullege.com/
2 http://code.google.com/p/httplib2/
3 http://codespeak.net/lxml/
4 http://blog.ianbicking.org/2008/03/30/python-html-parser-performance/

well as test values available directly in the language. That’s why we are
introducing the pywebfuzz5 project.

The pywebfuzz project provides values for testing as well as logic for requests
and range generation. When it comes to providing values for testing, pywebfuzz
implements values from the fuzzdb6 project cleaned up and available through
Python classes as list objects.

The following example would create a Python list that contains all of the values
from fuzzdb for LDAP Injection.

from	 pywebfuzz	 import	 fuzzdb	
	
ldap_values	 =	 fuzzdb.attack_payloads.ldap.ldap_injection	

Now the ldap_values variable would be a Python dictionary containing the values
from fuzzdb’s ldap_injection file. You could then iterate over the top of this
variable with your tests.

Even though it’s early in the projects life you can perform some basic requests
with the module as well. The pywebfuzz has a make_request function that allows
you to make requests for content. The following would create a GET request for
python.org

from	 pywebfuzz	 import	 utils	
	
location	 =	 "http://python.org"	
	
headers,	 content	 =	 utils.make_request(location)	

The module also has an encoder library that can aid in the encoding and
decoding of values in various formats. The following is an example of URL
encoding value.

from	 pywebfuzz	 import	 EncoderLib	
	
urlencoded	 =	 EncoderLib.url_encode(value)	

5 http://code.google.com/p/pywebfuzz/
6 http://code.google.com/p/fuzzdb/

Browser Integration
Python has integration in a couple of browser frameworks including Mozilla
Firefox and Webkit. Having integration with the browser can be an important part
of testing and give greater capabilities to the code that you write. Some of these
capabilities can be rendering of content, inspection of the DOM, as well as
integration with plug-ins.

Firefox
It’s possible to integrate with the Firefox web browser using the Python
programming language. Python can be used to write plug-ins for Firefox and
even standalone XULRunner applications. The easiest way to get up and running
with Python integrated is to use the Python Extension pyxpcomext7. This
extension allows for the use of cross platform communication components to
integrate the Mozilla components with your Python code.

You can also use XULRunner to create a standalone application that uses
Python logic. The following is a good tutorial on how to get up and running
creating standalone XULRunner applications with Python8. Even though there is
a good amount of integration with Python there are still some items that require
the use of JavaScript in order to interact with it.

Webkit
Python also has integration in the Webkit browser. This can come from GUI
frameworks such as PyGTK or PyQT. Even simple tasks like rendering
responses returned from other libraries can be done using a Webview. The
following is an example of making a request with the httplib2 module for
python.org and rendering it in a webview.

from	 PyQt4.QtGui	 import	 *	
from	 PyQt4.QtWebKit	 import	 *	
import	 httplib2	
	
http	 =	 httplib2.Http()	
headers,	 content	 =	 http.request("http://python.org",	 "GET")	
	
app	 =	 QApplication(sys.argv)	
	
web	 =	 QWebView()	
web.setHtml(content)	
web.show()	
	
sys.exit(app.exec_())	

7 http://pyxpcomext.mozdev.org/
8 http://pyxpcomext.mozdev.org/no_wrap/tutorials/pyxulrunner/python_xulrunner_about.html

The Webkit implementation inside of PyQT also has some interesting features
either currently or slated for the future. For example you can open an inspector
on the content being rendered and have integration of browser plug-ins such as
Flash and Silverlight as well.

Working with Binary Protocols
Throughout your testing experience, you will most likely run into more than a few
applications that utilize a custom or proprietary protocol in one or more of its
components. Often, the application architects decide on such formats for
simplicity, though most of all for their efficiency. Binary protocols are often
compact, and less verbose than their HTTP or even SOAP/XML equivalents.
These protocols generally adhere to a strict protocol specification, so while
flipping random bytes may shake out some potential vulnerabilities in the
underlying parser, you will not fully explore the capabilities of the applications’
components, resulting in inadequate test coverage.

Adobe Flex Application Testing and PyAMF
One such binary protocol is Action Message Format9 (AMF), commonly used in
Adobe Flex applications. Luckily, most of the heavy lifting writing a protocol
parser has been done for you and is available in the popular PyAMF10 module.
PyAMF, in addition to providing encoders and decoders, exposes a number of
API for those wishing to write their own clients and gateways for a variety of
existing Python frameworks.

The following example illustrates a simple AMF client that calls a method
“getLanguages” on the “service” destination available on a remote endpoint
hosted at http://demo.pyamf.org/gateway/recordset/amf.
__

from	 pyamf.remoting.client	 import	 RemotingService	
	
client	 =	 RemotingService("http://demo.pyamf.org/gateway/recordset")	
service	 =	 client.getService("service")	
	
print	 service.getLanguages()	
__

PyAMF supports serialization of Python data types to most AMF data types. For
example, if a remote method expects a parameter of java.util.Date, PyAMF will
accept and serialize a Python datetime.datetime() object to AMF.

9 http://opensource.adobe.com/wiki/download/attachments/1114283/amf3_spec_05_05_08.pdf
10 http://pyamf.org/

Similar to Java RMI11, Flex provides the ability for developers to pass objects
from client to server and vice-versa. In this scenario, the client binds an
ActionScript Value Object with a server-side Java object. It is easy to identify
methods expecting custom objects, as the server will complain about invalid
types – something along the lines of:

"Cannot	 convert	 type	 java.lang.String	 with	 value	 'marcin'	 to	 an	 instance	 of	
class	 flex.samples.crm.employee.Employee"	

In such a scenario, the client is binding an ActionScript Value Object with a
server-side “flex.samples.crm.employee.Employee” object. We can create such
an object using a simple object factory shown below:
__

import	 pyamf	
	
class	 Factory(object):	
	 	 	 	 def	 __init__(self,	 *args,	 **kwargs):	
	 	 	 	 	 	 	 	 self.__dict__.update(kwargs)	
	
pyamf.register_class(Factory,	 "flex.samples.crm.employee.Employee")	
	
employee	 =	 Factory(**{'firstName':	 'Marcin'})	
__

We also called the pyamf.register_class() method to register the Factory object
with a class alias. Whenever PyAMF encounters an instance of the Factory
object, it will look up its alias, (e.g., flex.samples.crm.employee.Employee), and
serialize it as such. This capability allows for us to successfully send our
“employee” object as the appropriate object type the server expects. You can
inspect the contents of the class cache by calling pyamf.CLASS_CACHE:
__

>>> pyamf.CLASS_CACHE
{<class 'pyamf.ASObject'>: <ClassAlias alias= class=<class 'pyamf.ASObject'>
@ 0xd5de50>, <class '__main__.Factory'>: <ClassAlias
alias=flex.samples.crm.employee.Employee class=<class '__main__.Factory'>
@ 0x7f778447ef10>, 'flex.samples.crm.employee.Employee': <ClassAlias
alias=flex.samples.crm.employee.Employee class=<class '__main__.Factory'>
@ 0x7f778447ef10>}
__

Custom Protocols
While PyAMF above was included as an example you may commonly run into,
you might not end up so lucky and will have to resort to writing a client on the fly.
It is in this scenario Python shines as language and you find writing a client to be

11 Java Remote Method Invocation,
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

both simple and time saving. Best of all, the underlying components can be
reused, especially in cases where you find yourself testing different protocols that
serialize to a common format.

When working with custom protocols, the preferred modules to work with are
StringIO and struct. StringIO (and its faster cousin, cStringIO), provides a file-like
object interface to a string buffer. This allows us to write() to and read() from
string buffers. Using struct, we can convert Python values to C structs. This is
useful when a particular data type such as a Python Integer, needs to be
encoded to an 8-byte IEEE-75412 double precision floating point in network byte-
order.

Implementing an example protocol

Take for example the following protocol specified below:

U8	 	 	 	 	 	 	 	 	 	 =	 unsigned	 8-‐byte	 integer	
U16	 	 	 	 	 	 	 	 	 =	 unsigned	 16-‐byte	 integer	
UTF-‐8	 	 	 	 	 	 	 =	 U16	 *	 (UTF8-‐char)	 ;	 as	 defined	 in	 RFC3629	
DOUBLE	 	 	 	 	 	 =	 8-‐byte	 IEEE-‐754	 double	 precision	 	
	 	 	 	 	 	 	 	 	 	 	 	 ;	 floating	 point	 in	 network	 byte	 order	 	
	
msg	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 =	 message-‐count	 parameters	 	
message-‐count	 	 	 	 	 	 =	 U16	
parameters	 	 	 	 	 	 	 	 	 =	 number-‐type	 |	 boolean-‐type	 |	 string-‐type	
number-‐marker	 	 	 	 	 	 =	 0x00	
boolean-‐marker	 	 	 	 	 =	 0x01	
string-‐marker	 	 	 	 	 	 =	 0x02	
number-‐type	 	 	 	 	 	 	 	 =	 number-‐marker	 DOUBLE	
boolean-‐type	 	 	 	 	 	 	 =	 boolean-‐marker	 U8	
string-‐type	 	 	 	 	 	 	 	 =	 string-‐marker	 UTF-‐8	

In this particular protocol, we construct a message by a) specifying the number of
parameters in the message followed by b) its parameters. Each parameter can
be a number, a Boolean or a string. Each parameter must be prefixed with its
appropriate type marker. Strings must be encoded in UTF8-char as defined in
RFC362913 and must be prefixed by an unsigned 16-byte integer designating the
length of the string. Numbers must be 8-byte IEEE-754 double precision floating
points in network byte-order.

Let’s take the following parameters and encode it according to the protocol
specification:

param1	 =	 "sing"	
param2	 =	 "I've	 got	 ?	 problems	 but	 your	 app	 ain't	 one."	
param3	 =	 99	

12 http://en.wikipedia.org/wiki/IEEE_754-1985
13 http://www.ietf.org/rfc/rfc3629.txt

param4	 =	 True	

According to the protocol specification, the message must first begin with a
message-count, a 16-byte unsigned integer that specifies how many parameters
are in our message. Since a 16-byte unsigned Integer is also known as an
“unsigned short”, we’ll use the unsigned short format specifier, “H” when calling
struct.pack().
__

>>>	 buf	 =	 StringIO.StringIO()	
>>>	 buf.write(struct.pack("H",	 4))
__

After our message-count, we can start adding our parameters. Recall a string
must be specified with a string-marker, 0x02, followed by the length of the string,
and then the string in UTF8-char format.
__

	
>>>	 buf.write("\x02")	 #	 string-‐marker	
>>>	 buf.write(struct.pack("H%ds"	 %	 len(param1),	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 len(param1),	 param1))
__
	
Our buffered string now contains the following value:
__
	
>>>	 buf.getvalue()	
"\x04\x00\x02\x04\x00sing"	
__
	
Next, we encode param2, another string, the same way:
__

>>>	 buf.write("\x02")	
>>>	 buf.write(struct.pack("H%ds"	 %	 len(param2),	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 len(param2),	 param2))
__
	
Afterwards, our buffer string looks like:
__

>>>	 buf.getvalue()	
"\x04\x00\x02\x04\x00sing\x02+\x00I've	 got	 ?	 problems	 but	 your	 app	 ain't	 one."
__
	
For param3, we must encode it as a IEEE-754 Double in network byte-order. To
write a Double, we use “!d” format specifier to struct.pack. The exclamation mark
specifies that the format be encoded in network-byte order.

__

>>>	 buf.write("\x00")	
>>>	 buf.write(struct.pack("!d",	 99))
__
	
Our encoded message now looks like:
__

>>>	 buf.getvalue()	
"\x04\x00\x02\x04\x00sing\x02+\x00I've	 got	 ?	 problems	 but	 your	 app	 ain't	
one.\x00@X\xc0\x00\x00\x00\x00\x00"	
__

We’re not done just yet; we still need to add our last parameter, a Boolean to the
message:
__

>>>	 buf.write("\x02")	
>>>	 buf.write(struct.pack("?",	 True))
__
	
After all is said and done, our encoded message looks like so:
__

>>>	 buf.getvalue()	
"\x04\x00\x02\x04\x00sing\x02+\x00I've	 got	 ?	 problems	 but	 your	 app	 ain't	
one.\x00@X\xc0\x00\x00\x00\x00\x00\x01\x01"	
__

Conclusion
Python is a great language for creating cases for testing modern web
applications. There are libraries to address every major web technology even
items such as AMF and HTML5. When encountering a difficult testing situation
being able to write your own code to properly test the application may be the
difference between success and failure. Python is the perfect language to fill the
void left where modern testing tools are ineffective.

